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The assessment of burn depth, and as such, the estimation of whether a burn wound is ex-
pected to heal on its own within 21 days, is one of the most important roles of the burn
surgeon. A false-positive assessment and the patient faces needless surgery, a false-negative
one and the patient faces increased length of stay, risks contracture, and hypertrophic scar
formation. Although many clinical signs can aid in this determination, accurate assessment
of burn depth is possible only 64 to 76% of the time, even for experienced burn surgeons.
Through the years, a variety of tools have become available, all attempting to improve clini-
cal accuracy. Part 1 of this two-part article reviews the literature supporting the different
adjuvants to clinical decision making is, providing a historical perspective that serves as a
framework for part 2, a critical assessment of laser Doppler imaging. (J Burn Care Res
2009;30:937–947)

A burn wound is categorized as first, superficial
second, deep second or third degree corresponding
to a clinical assessment of depth of thermal injury.
Particularly important is the differentiation be-
tween superficial and deep second-degree injuries.
The reason for this distinction is to try and predict
whether the wound will heal by itself within 14 to
21 days or will require excision and grafting for
optimal healing. The problem is self-evident. With
a false-positive assessment, needless surgery will be
performed. With a false negative, the patient faces
increased length of stay in the hospital, contrac-
ture, and hypertrophic scar formation. The stan-
dard way to make this assessment involves the judg-
ment of the clinician evaluating the wound. Aspects
such as pain and tenderness, formation of blisters,
appearance of the dermis, whether pink, white,
grayish yellow, or reddish brown, and whether it
blanches or not help guide this decision.1–4 Addi-
tion of a pin-prick test in adults5 or a modified
pin-prick test in children also helps because it in-
volves no extra time to perform, involves no

distress, and helps improve accuracy of assess-
ment.6 The determination of burn depth and
whether a wound will heal spontaneously within 21
days, however, is around 50% for inexperienced
surgeons.7

The advent of digital photography brought with it
the possibility of telemedicine, where a clinician inex-
perienced in burn care in a remote location could
transmit visual information about the wound to a
more experienced surgeon to make the determina-
tion of depth. Correlation between compressed and
noncompressed digital images and clinical assessment
are in the range of 90% for experienced surgeons.8

Although telemedicine offers a clear advantage in
communication between clinicians, particularly with
respect to potential transfer of patients from remote
areas or in areas with limited resources,9 the assess-
ment of depth remains a visual one. Although some
clinicians have elevated this determination to an art
form; even performing serial clinical assessments,10

the best clinical estimates of burn depth range from
64 to 76% for experienced surgeons.11,12 As an aide in
making the prediction of healing, some have sug-
gested performing serial biopsies looking for the pres-
ence of viable dermal tissue and adnexal structures.13

The numbers are so disappointing that some have
suggested that the only time to accurately assess the
depth of a burn is during wound excision in the op-
erating room.2 The need for an early determination is
underscored by the fact that there is a shorter hospital
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stay and quicker return to work in those patients with
indeterminate wounds treated with early excision and
grafting as opposed to expectant management, albeit an
increased blood product transfusion requirement.14

Through the years, there have been many modali-
ties that have been used as adjuncts to determine the
exact depth. Long regarded as the gold standard to
determine exact depth, there is a wealth of literature
that deals with tissue biopsies and histological analy-
sis.15,16 Through the years, hematoxylin and eosin
staining has been used to determine normal and de-
natured collagen and the assessment of patent blood
vessels has been used to mark the difference between
partial- and full-thickness injury.16 The addition of
immunohistochemical staining techniques, such as
vimentin, has also been suggested to add specificity in
the acute postburn period.17 The routine use of bi-
opsies, however, becomes expensive, leaves a perma-
nent scar, and requires an experienced pathologist,
and as such are rarely used in clinical practice.15 This
has led some to suggest that using burn wound biop-
sies and histological analysis, although an important
adjunct, should not be considered the gold standard
for burn depth assessment.16

The need for a modality to help clinical decision
making, which is less invasive than tissue biopsies has
resulted in a plethora of modalities, all with mixed
results. What follows is a historical account of some of
the methods used with the main objective to critically
assess some of the current techniques.

Dr. Janzekovic
The idea of using excision and grafting for burn in-
juries is over 80 years old. Since 1928, Wells18 de-
scribed the idea of immediate excision followed by
skin grafting to treat electrical injuries. Between the
1940s and 1950s, several surgeons used this tech-
nique of early excision, within 5 days of injury, fol-
lowed by skin grafting for deep injuries.19–23 The
overall results were encouraging, achieving 90% graft
take,20 reducing contractures,21 and accelerating clo-
sure while decreasing hospital stay.22 Despite this, a
reduction in mortality was not seen.24,25 In 1970,
Janzekovic described two aspects of her excision tech-
nique that would have a profound effect on the op-
erative management of burn wounds. First, she de-
scribed the importance of excising not only “extensive
deep burns” but also “areas of only partial skin injury.”2

Second, she introduced the concept of tangential ex-
cision “to an area of profuse bleeding,” rather than
full excision to the level of the fascia as was performed
at the time. With these changes, she noticed a de-
crease in mortality, pain, and infection while allowing

for a complete morphological and functional regen-
eration of the skin.1

The idea of preserving the dermis was not new,
since in 1936, Taylor26 had suggested preserving the
dermis as a way to improve healing of burn injuries.
This thought had been echoed by others,27,28 and in
1959, Lorthioir29 attempted to separate the nonvia-
ble dermis through abrasion. Difficulties in assessing
burn depth and the interface between live and dead
dermis limited the applicability of this thought into
the excisions being performed. Between 1961 and
1969, Janzekovic1 treated more than 1600 patients
with her novel tangential excision method, but it was
thought that the only way to assess the depth of a
wound was in the operating room during excision.2 A
method to aid in this determination was needed.

Radioactive Isotopes
Some of the early work regarding burn depth assess-
ment involved the injection of radioactive phospho-
rus (32P). Since 1942, the detection level of 32P had
been studied in some superficial tissues in humans,30

with an early clinical application being the detection
of peripheral vascular disease.31 In 1953, the discov-
ery that uptake of 32P by the skin could be quanti-
fied32 led to early research in burns.33 Although the
animal model results were encouraging, the tech-
nique proved too cumbersome and poorly reproduc-
ible, and its use was abandoned.

Vital Dyes
The use of vital dyes was first suggested since in 194234

as a way to assess adequacy of circulation. A year later,
Dingwall35 performed a series of experiments in animals
and humans where he showed that full-thickness burns
could be detected under a wood filter after injection of
fluorescein. After this early work, the first reports of their
systemic study in burns would not publish until 1961.
There are two main kinds of vital dyes, nonfluorescent
and fluorescent, which means that illumination of the
burnt area with ultraviolet light can detect the presence
of the dye at specific depths.

Among the nonfluorescent dyes, some of the ear-
liest reports used bromophenol blue,36 and patent
blue V.37,38 Because these two agents were not ap-
proved for clinical use, the only studies performed
were in murine models. Both, bromophenol blue and
patent blue V were able to differentiate necrotic from
living tissue on the surface.39 While exciting at first
glance, this is not enough because no determination
of the depth of necrosis can be made. To avoid this
problem, fluorescent dyes were attempted.

The earliest fluorescent dyes studied were fluores-
cein40,41 and tetracycline,42 which had the added ad-
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vantage of being approved for clinical use. Different
dosages and times of injection were suggested in the
case of tetracycline and early reports suggested that
different depths of skin necrosis were distinguishable
to some extent.39 This was, however, a fixed distance
from the surface in millimeters and did not account
for the skin having different thickness in different
parts of the body. In the case of fluorescein, some
reports suggested that ultraviolet light was not an
absolute necessity for some differentiation of depth.41

The main problem is that no quantification method
could be developed and, as such, it remained no bet-
ter than clinical judgment. Despite this, it has been
used intraoperatively as an adjunct in difficult cases or
critical areas such as the hands.43 The development of
a fluorometer in the late 1970s allowed for quantifi-
cation of the fluorescein within a tissue.44 Studies
assessing both delivery44,45 and extraction46–48 of
fluorescein from tissues allowed for some degree of
quantification of blood flow, and initial studies
in burn patients were encouraging.49 However, a
follow-up study confirmed the fact that the variability
of the readings was large and as such, it did not pro-
vide a definitive assessment of the depth of the wound
surveyed.50

The most recent fluorescent dye to be studied is
indocyanine green. Initially described for assessment
of burn depth in an animal model in 1992 by Green et
al,51 the initial animal52,53 and human trials54,55 have
shown potential value. The fact that the contrast is
extravasated in the period of capillary leak56 limited
clinical application initially, although a recent report
suggests improved detection capabilities with indo-
cyanine green video angiography.57

Thermography
One of the earliest adjuncts to clinical judgment to
assess burn depth was thermography, the science of
recording graphically temperature, or changes in
temperature. Machines capable of determining a dif-
ference in skin temperature as small as 0.1°C were
developed in the 1950s and 1960s and their use
adapted to clinical conditions such as detection of
tumors59,60 and the viability of pedicle flaps.61

With respect to burns, the theory was that deeper
injuries would be appear colder than more shallow
ones owing to a decreased perfusion.60 Early work in
the 1960s suggested that this was indeed the case,62

and follow-up work suggested that the difference be-
tween partial-thickness and full-thickness wounds
was about 2°C.63 Hackett64 performed one of the
largest studies in burn patients in 1974, surveying the
wounds of 109 patients and found a 90% accuracy in
the assessment of depth using thermography based

on the determination of a 1°C difference in temper-
ature between the burn wound and the intact tissue.

Further work by Anselmo and Zawacki revealed
some of the pitfalls of this technology. In an animal
model, they showed that evaporative loss of heat, or
evaporative cooling, could disguise the temperature
differential of a partial-thickness wound and lead to a
false diagnosis of a full-thickness one. Similarly, a full-
thickness wound with an intact blister could conserve
enough heat to lead to a false diagnosis of a partial-
thickness wound.65 These drawbacks seemed to be
more evident within the first 4 days after injury. Al-
though the technique continued to be used in Poland
and Russia,66–71 elsewhere it fell in disuse until 1990s
when Cole et al72 used cling film (Saran wrap™) to
eliminate evaporative cooling. Using this technique,
they correctly predicted either healing or need for
excision and grafting in 33 of 36 wounds, whereas
clinical judgment was accurate in only 22 of 36
wounds.73 Despite the use of a barrier method to
decrease evaporative cooling, the best time to per-
form thermography seems to remain at 72 hours
postinjury.74

One important aspect to note is that each study
published seems to have a different cutoff point in
terms of the temperature difference needed to
consider a wound full thickness. A recent study by
Renkielska et al75 supports this and underscores the
importance of each center, validating their own values
for burn classification; that is, at what temperature
difference from normal skin is excision necessary. On-
going work using newer thermography modalities,
such as active dynamic thermography76 and infrared
(IR) thermography,77 suggest an advantage in this
aspect to traditional static thermography. Briefly
stated, rather than assessing the temperature differ-
ence between injured and noninjured skin, this tech-
nology relies on the difference in conductivity and
thermal diffusivity between burnt and nonburnt tis-
sue. After obtaining a baseline reading on the tem-
perature distribution of the tissue in question (with
the standard IR cameras), the tissue is heated with
halogen lamps (external thermal excitation by optical
irradiation), followed by measuring the temperature
changes. Initially described in 1999,78 this technique
has been tested using phantoms and correlated to
histopathology in an animal model.76,79 A pilot study
on normal human volunteers shows promise,80 but
the results are too early to draw conclusions of its
eventual usefulness in burn patients.

Photometry
Anselmo and Zawacki81 first used photometric tech-
niques in 1973. Their rationale was that infrared light
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could be used to differentiate open from thrombosed
vessels, ie, superficial from deep burns. In their initial
study, they proved that computer-enhanced images
could differentiate between superficial and deep
wounds, and in a follow-up study82 they automated
the process even more by taking pictures of the burn
wound using green, red, and infrared light and then
“subtracting” the surface features seen with the green
and red light from the infrared detected image. Their
studies paved the way for Heimbach et al83 to develop
a “burn depth indicator” in 1980. Briefly stated,
their apparatus consisted of a probe lined with
light-emitting diodes that could emit green, red, and
infrared light, as well as detect the intensity of the
reflected light. The output was a computation of the
different ratios of reflected light (ie, green–IR, red–
IR, green–red). They validated this burn depth indi-
cator against the clinical judgment of two senior burn
surgeons and found it to have a better negative pre-
dictive value, ie, better than clinical judgment at
determining which wounds would not heal sponta-
neously within 3 weeks. It was also better at predicting
healing in those wounds that the surgeons thought they
could not exact an opinion.12 Further refinements of
this technique have yielded a color palette, more user
friendly than the ratios of reflected light, and which
characterizes the wounds into likely to, unlikely to, and
definitely not going to heal within 3 weeks.84,85

Assorted Modalities
Liquid Crystal Thermoindicating Film. Because

of the difficulty of the problem, and the lack of one
measurement technique that stands clearly as the
best, a multitude of other techniques have been at-
tempted. One such technique was the application of
liquid crystal thermoindicating films directly on the
wounds of humans to measure the temperature of the
burn wound. Although similar in concept to ther-
mography, a colder measurement signifies a deeper
wound, the results in this study were too unreliable.86

Nuclear Magnetic Resonance. With the advent of
nuclear magnetic resonance, Koruda et al87 used this
technique in an animal model to assess burn depth.
This was based on the fact that there is a differential
edema resorption time between partial-thickness
(faster resorption) and full-thickness wounds (slower
resorption). Because the T1-weighted images corre-
late strongly with total water content in the tissue,
sequential images could be used to differentiate
partial- from full-thickness injuries based on the
change in water content. Although their study proved
that indeed nuclear magnetic resonance can differen-
tiate between partial- and full-thickness burns based

on the water content, the fact that total water content
was measured in vitro by desiccation limits the clinical
applicability of this study. Animal work suggests that
there are in vivo ways of establishing this difference, but
the results are still to early to establish conclusions.88

Nuclear Imaging. After its application for assess-
ment of muscle damage/myonecrosis after electrical
injury, the injection of radio-labeled tracers to assess
the patency of the microcirculation at the area of ther-
mal damage was attempted. An animal model using
99mTc (methoxyisobutylisonitrile) showed decrease
tracer uptake in the area of injury.89 Considering the
wealth of noninvasive modalities that can also provide
a faster assessment, the clinical applications of nuclear
imaging seems impractical.

Ultrasound Techniques
Pulse-Echo Ultrasound. During the 1970s, ul-

trasound was becoming more widely used in a variety
of applications in medicine. The study by Goans et
al90 on animals suggested that ultrasound could be
used as a quantitative method of assessment of burn
wounds. The idea was to identify the interface be-
tween the coagulation necrosis layer and the remain-
ing viable dermis. Similarly, it could detect the inter-
face between the deep dermis and the subcutaneous
fat, thus giving a measurement of the remaining der-
mis. After this rationale, Kalus et al91 used a 5-MHz
probe in two patients, accurately predicting healing in
one of them and the need for excision in the other.
The advantages of ultrasound as a noninvasive, expe-
dient way to help determine burn depth were echoed
by others in animal models.92,93 Improvements in
technology brought improved images in animal mod-
els as probes went to 10 MHz94,95 and 18.5 MHz,96

and in humans for the assessment of other skin con-
ditions such as melanoma and psoriasis97; however,
these results did not translate into similar results in
humans suffering from burn injuries.98 A potential
reason is that some of the animal studies differenti-
ated between normal and denatured collagen and not
epidermal cells. This is important for while collagen
denatures at 65°C, the epidermal cells do so at 47°C.
It is possible then that ultrasound underestimates the
real depth of injury.15

Pulse-Wave Doppler Ultrasound. The addition
of Doppler images in the mid-1980s to traditional
B-mode ultrasound added an important element to
the morphologic information obtained. Briefly stated,
the Doppler principle states that a wave form aimed at
an object will bounce off it and return unchanged if the
object is static, but will return with a deflection if the
object is in motion. By measuring the degree of this
deflection, the velocity of the object is known. Al-
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though ultrasonic Doppler provides velocity informa-
tion without depth resolution, the addition of pulsed
Doppler to real-time B-mode ultrasound provides, in
theory, a more robust assessment of depth and viabil-
ity of a wound.99,100 Early animal work showed that
indeed high-frequency Doppler ultrasound (50–200
MHz) could detect in vivo velocities in the order of
those expected for blood within the capillaries.101,102

One human study testing a noncontact, pulse-wave
Doppler ultrasound found a 96% correlation between
ultrasonography and the prediction of healing within
3 weeks.103 As important as this finding was, Doppler
ultrasonography would not last, giving way then to a
new technology: laser Doppler.

Laser Doppler
The first suggestion of the use of laser Doppler flow-
metry for the evaluation of burns dates from 1975,
when Stern104 described using a 632.8-nm helium–
neon laser to assess the circulation of a fingertip fol-
lowing different conditions. His initial experiment
showed that the velocity of moving particles could be
assessed and that the number of moving particles
could be derived as well. Finally, he showed how the
output measurement was quite labile as it was affected
by room temperature, patient position, respiratory
pattern, and even emotional stimulation. Neverthe-
less, this provided a noninvasive way (although con-
tact with the skin was required in this initial descrip-
tion) to assess rapid changes in perfusion in a specific
area. Two more reports followed, assessing the feasi-
bility of measuring superficial blood flow under a va-
riety of conditions in both animals105 and humans,106

eventually leading to the first systematic series of
studies in burn patients in 1984 by Micheels et al.

In their first study, Micheels et al107 confirmed
Stern’s observations of being able to assess microcir-
culation over a variety of physiologic conditions.
Their follow-up study tested the ability to measure
microcirculation in a burn wound and the ability to
measure the effect of vasodilatation.108 They showed
a correlation between the clinical assessment of burn
depth and the local blood flow. In their final study,109

they scanned 15 burn patients on the third postinjury
day and compared the measurements from the laser
to clinical judgment and wound biopsies. They found
that the laser Doppler correlated closely to histology
and was superior to clinical judgment. It is important
to note that this study did not look at the natural
history of the scanned wounds, and no prediction of
healing within 21 days was made.

The first observational study correlating laser
Doppler measurements with potential of healing of

wounds was performed by Green et al.110 This was an
observational study in which the authors noted an
increased perfusion in those wounds that eventually
healed without the need for grafting than in those in
which excision and grafting were necessary. In reports
that followed, several investigators claimed laser
Doppler predicted healing within 21 days with 70 to
100% accuracy111,112 and failure to heal between 93
and 100% accuracy.111,113,114 These results have also
been confirmed in children115 and also specifically in
the hands, where the expected time to heal is only 14
days.116

Although all of these results were encouraging, two
main problems remained with the laser Doppler flow-
metry technique. The first was that there had to be
contact between the laser and the tissue, and the
other, partly related to the close contact, was that
only a 1-mm area could be studied at a time. To
circumvent these pitfalls, Niazi et al117 described and
studied a laser Doppler scanner in 1993. The patients
could be as far away as 1.6 m from the scanner, it
allowed the study of a 500 � 700 mm area in 6
minutes; and, most importantly, there seemed to be a
good correlation between the scans and the clinical
outcome of the wounds. Correlation between laser
Doppler scanner (or laser Doppler imaging) and time
to heal was confirmed independently by Pape et al118

and Kloppenberg et al119 in adults and by Holland et
al120 in children. A study by Jeng et al121 suggested that
not only it could predict healing potential but also that
it could do so 2 days ahead of clinical judgment.

A very important finding from the study of
Kloppenberg et al was that wounds of different
depths, superficial second, deep second, and third
degree all behaved differently when scanned on suc-
cessive days. The most superficial wounds started
with a high perfusion and proceeded to decreased
perfusion on successive scans during 2 weeks.
Wounds of intermediate depth also started with a
high perfusion and progressed to an even higher value
after 4 days, eventually declining. The deepest
wounds started low and stayed low. In light of these
findings, several questions arise about laser Doppler
scanning. The first is how consistent are the measure-
ments? When Stern described the technique 26 years
earlier, he noted that the measurements were quite
labile, being affected by a variety of factors, both en-
vironmental and physiologic.104 The fact that laser
Doppler provided such an automatic measurement of
flow was initially seen as a very positive aspect. How-
ever, in a dynamic environment such as a burn, the
numbers then need to be followed carefully. Further-
more, what is the effect of changing basic conditions,
such as the distance from the wound, the room tem-
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perature, and the angle at which the scan is being
performed on the output measurement? And a third
question, if the laser Doppler measurements are so
sensitive to external conditions, and a burn wound is
such a dynamic environment in the first few days after
injury, when is the best time to scan? The answers to
these questions are fueling the current research efforts
with regard to laser Doppler scanning and will ulti-
mately decide the fate of this technology.

Newer Technologies
As the problem of accurately assessing burn depth
continues, newer technologies are being developed.
Recently, there has been excitement with the devel-
opment of speckle technology as the next step in the
evolution of laser Doppler scanning. Also recently
reported is the use of in vivo confocal microscopy to
assess burn depth.122 Both of these technologies are
very new and, as such, it is too early to provide a
critical assessment.

SUMMARY

Multiple techniques to assess burn depth and to try to
predict time to heal have been used in the last 70
years. In an evidence-based medicine environment,
the question of the level of evidence arises. The Com-
mittee on Organization and Delivery of Burn Care
defined class I evidence as “a prospective, random-
ized controlled clinical trial in which an investiga-
tional treatment plan is compared to existing standard
therapy, using a defined endpoint including costs,
risks, and benefits.”123 According to this definition,
most of the current evidence is class II or class III
(Table 1). Furthermore, comparisons between stud-
ies are difficult as most used different methodologies
and end points.

The problem of burn depth assessment to guide
clinical decision making is as ever present today as it
was 70 years ago. Certainly, there has been progress
and the “questionable” wounds are but a subset of
what they used to be. In an immediate gratification
world, we expect to know immediately how a wound
is going to behave. There is a certain frustration in the
realization that the definition of which wounds are ex-
pected to heal seems to be a moving target. No one
technology has emerged as the gold standard, the
time that it takes for a wound to heal and the quality
of the end-result continue to guide clinical decision
making. We now have a better understanding of some
of the factors that influence burn wound healing. A
wound is a very dynamic process in the first 48 hours

after injury; perhaps, expecting any one of these tech-
nologies to “predict” healing during this time period
is illusory.
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